Медь эффективно используются на протяжении многих лет для контроля роста водорослей, уничтожения паразитов в морской и пресной воде. Поскольку данный металл не изменяет цвета воды, он может использоваться как в аквариумах, так и больших водоемах. Химический состав воды и некоторые другие факторы определяют необходимую дозировку и продолжительность использования меди.
Однако стоит учитывать, что этот элемент очень вреден для некоторых видов рыб и смертельно опасен для большинства беспозвоночных. Его постоянное использование также неблагоприятно отразится на здоровье рыб, приводя к повреждению жабр и других тканей, а также к общему угнетению иммунной системы. Поэтому очень важно понимать, как и при каких условиях его применять.
Расчеты количества меди и процедуры ее использования различны для морской и пресной воды. Необходимо учитывать такие факторы, как жизненный цикл паразита и его восприимчивость к меди, а так же чувствительность нецелевых видов, живущих в этом же водоеме, чтобы понять, можно ли использовать такой способ очистки воды вообще.v
Медь в аквариумной воде. Норма, влияние, контроль. Cu
В данной статье речь пойдет о медном купоросе (CuSO4 • 5H2O или пентагидрата сульфата меди), наиболее часто используемой формы меди в аквакультуре.
Активный компонент
Медь является тяжелым металлом, который может существовать в различных формах. Наиболее эффективное состояние меди с точки зрения контроля водорослей и паразитов имеет заряд 2+ (Cu 2+ ). В этой форме металл находится в составе медного купороса, который также известен как пентагидрат сульфата меди, потому что связывает пять молекул воды.
Когда сульфат меди растворяют в воде, он распадается на отдельные ионы Cu 2+ и ионы SO4 2- . Так как медь является активным ингредиентом в медном купоросе, который остается в водном растворе, то концентрация Cu и должна быть измерена. Для восприимчивых морских паразитов, в том числе Amyloodiniu и Cryptocaryon, она должна составлять 0,15-0,20 мг на литр воды.
По многим причинам поддержание уровня ионов меди может оказаться непростой задачей. Вода имеет множество растворенных в ней веществ, например, ион бикарбоната (HCO3 — ), который легко соединяется с медью и «удаляет» ее ионы из раствора. Карбонаты, входящие в состав доломита, измельченных кораллов, морских раковин растворяются в воде и связываются с Cu 2+ , изменяя тем самым ее концентрацию. Кроме того, многие живые организмы, включая бактерий, водоросли и креветок, а также некоторые субстраты, например, активированный уголь, впитывают медь.
Однако есть и другие факторы, которые могут привести к сильному увеличению концентрации данного металла. Возрастание солености снижает связывание (абсорбцию) меди с поверхности. В соленой воде при нейтральном рН уровне (около 7), медь окружена молекулами хлорида. Закисление приводит к высвобождению ранее связанных молекул, в связи с чем повышается риск поражения организмов. Кроме того, живые организмы, такие как креветки, накапливают в себе медь, и если они позже будут съедены рыбой, последняя может получить отравление.
Хелаты
Хелатные агенты помогают поддерживать уровень меди в воде, образуя структурированный комплекс с данным элементом. Эти комплексы различаются по своей устойчивости в зависимости от агента. Например, агент ЭДТА (этилендиаминтетрауксусная кислота) ведет себя в растворе достаточно стабильно. Можно также использовать цитрат, но он уже менее стабилен. С другой стороны, комплексы цитрата с медью обладают более выраженной биологической активностью, чем ЭДТА и легче удаляются из воды после завершения процедуры.
Тем не менее медный купорос более распространен в аквакультуре, так как его проще контролировать по сравнению с хелатными агентами, сила и активность которых более неопределенные, чем у купороса, и их сложнее вывести из воды.
Воздействие меди на паразитов
В рекомендуемых концентрациях (0,15-0,20 мг/л) медь токсична для ряда паразитирующих на рыбе организмов, в том числе, морских паразитов Cryptocaryon irritans и Amyloodinium ocellatum. В первую очередь, она хороша в борьбе на инфекционной стадии, когда патогены еще свободно плавают и не вступили в контакт с хозяином. Таким образом, понимание их жизненного цикла очень важно для расчета длительности процедур. Для Cryptocaryon процедуры должны проводиться не менее 3-х недель. А для Amyloodinium около 10-14 дней.
Вред здоровью нецелевых организмов
Некоторые виды рыб очень чувствительны к меди и погибают, даже при ее концентрациях ниже терапевтического уровня (т. е. менее 0,15 мг/л). Очень важными факторами выживаемости рыбы являются период акклиматизации, когда рыба подвергается воздействию постепенно возрастающей концентрации ионов в течение нескольких дней, а также стадия жизненного цикла особей.
Например, у некоторых видов икра приспосабливается к меди намного быстрее, чем мальки или взрослые особи, и имеет больший коэффициент выживаемости. У других видов рыб наблюдается обратная картина. Токсичность меди проявляется в поражении жабр, печени, почек, иммунной и нервной систем. При этом в большей степени страдают жабры.
Данный орган дыхания становится более плотным, утолщается и теряет способность регулировать обмен ионов между внешней средой и внутренней средой организма. Данный металл также подавляет функции иммунной системы и боковой линии. Длительное воздействие меди может привести к снижению скорости роста особи. При отравлении, в дополнении к основному признаку дистресса (учащенное дыхание), рыба темнеет и начинает демонстрировать поведенческие особенности, включая нарушение координации движений и сонливость. В конечном итоге, подобное течение отравления приводит к гибели.
Большинство беспозвоночных весьма чувствительны к меди и не способны пережить лечение этим элементом. Поэтому на период проведения процедуры, их необходимо выловить из водоема и поместить отдельно. Вернуться в свой родной дом они смогут только когда концентрация металла составит менее 0,01 мг/л. После проведения обработки необходимо несколько раз проверить его уровень, потому что данный элемент имеет тенденцию накапливается в различных участках водоема (например, на декорациях) и постепенно оттуда высвобождается при изменении pH среды.
Влияние окружающей среды
Факторы, определяющие токсичность меди в воде:
1) количество свободного иона (Cu 2+ );
2) чувствительность рыбы и беспозвоночных;
3) возраст рыбы;
4) акклиматизация;
5) наличие специфического субстрата, особенно из кальция и карбоната магния;
6) наличие растворенных веществ, в т.ч. карбонатов, которые, связываясь с медью, снижают ее концентрацию в чистом виде и силу действия;
7) наличие в водоеме организмов, которые способны биоаккумулировать (накапливать) медь в своем организме (креветки, раки и т.п.);
8) наличие регулятора кислотности воды. Концентрации меди может меняться с течением времени, например, внезапно увеличиваться во время падении рН. При этом она должна измеряться, по меньшей мере, дважды в день и, соответственно, её нужно корректировать (см. раздел ниже).
Взаимодействие с бактериями
Помимо патогенных организмов, медь вредна для нитрифицирующих бактерий. Концентрация 0,3 мг/л сульфата меди затормаживает процессы окисления аммиака и нитритов, поэтому требуется мониторинг их содержания в воде. Некоторые бактерии, вызывающие заболевания у рыб, очень устойчивы к меди, для которых смертельная концентрация составляет около 1,25 мг/л.
Определение концентрации
Медный купорос лишь на четверть состоит из чистой меди, которая и является важнейшим элементом в процессе очистки воды. Дозировка сульфата меди основана на порции чистой меди в растворе, необходимой для очистки паразитов, в том числе Cryptocaryon и Amyloodinium. Концентрация ионов Cu 2+ при этом должна составлять около 0,15-0,20 мг/л.
Чтобы определить необходимое количество медного купороса (в граммах) для данного объема воды, можно воспользоваться следующими формулами:
Объем воды в литрах × необходимая концентрация чистой меди (мг/л) × 0,00392 = необходимая масса медного купороса (грамм).
Пример:
1000-литровый системе необходимой концентрации свободной меди: 0,20 мг / л
По выше приведенной формуле:
1000 л × 0,20 мг/л × 0,00392 = 0,784 г сульфата меди.
При использовании металла в более высоких концентрациях следуют инструкциям производителя.
Достижение и поддержание требуемой концентрации
Так как качество воды, субстрат и другие факторы определяют уровень чистой меди, достижение каких-либо конкретных доз в системе может оказаться сложной задачей.
После подсчета необходимой концентрации медикамента необходимо добавить половину от него в водоем. Лучше всего это делать, смешав заранее медный купорос с дистиллированной водой до получения перенасыщенного раствора, после чего выливать пропорционально в каждый участок водоема, избегая формирования так называемых «горячих точек» (участков с превышенным уровнем концентрации меди).
Также раствор медного купороса можно постепенно выливать в самп, однако это неблагоприятно скажется на полезных бактериях в биофильтре. После того, как соединение равномерно распределится по всему водоему и до момента достижения требуемой концентрации, необходим мониторинг содержания меди.
Часто из-за соединения данного металла с компонентами водоема требуется больше купороса, чем было рассчитано по формуле. Измерения концентрации должны проводиться два раза в день, и при понижении значений медикамент добавляют. Как уже говорилось ранее, процедуры могут продолжаться более 4-х недель, в зависимости от устойчивости паразита и ситуации в целом.
Выведение меди из воды
Обобщение
Концентрация чистой меди около 0,15-0,20 мг/л является эффективным средством в борьбе с паразитами, в том числе Amyloodinium и Cryptocaryon, а так же многими видами водорослей, отрицательно влияющих на рыбу и беспозвоночных.
Медный купорос является самой распространенной формой меди в морской и аквариумной аквакультуре. Так как морская вода содержит много примесей, то процесс очистки такого типа водоемов от паразитов намного сложнее и требует большей осторожности, чем в случае с пресной водой. Кроме того, следует учитывать в влияние факторов на уровень конечной концентрации чистой меди в воде.
Медь может быть токсична для некоторых чувствительных видов рыб и высоко токсична для многих видов беспозвоночных. Для многих видов рыб постоянное воздействие меди опасно для их жабр, почек, селезенки и других органов, а так же ослабляет иммунную систему. Медь также может отрицательно влиять на полезных бактерий в биофильтре.
Беспозвоночные должны быть удалены из водоема до начала медных процедур.
Расчет дозы медного купороса для морской и пресной воды разный. В случае с морской водой он основан на измерении концентрации свободных ионов меди. А в пресноводных системах расчеты базируются на уровне щелочности воды. Медный купорос состоит на четверть из активного ингредиента (Cu 2+), используемого для очистки водоемов.
Терапевтический уровень меди (0,15-0,20 мг/л) достигается постепенно в течение 2-3 дней, чтобы рыба могла к нему более-менее привыкнуть. Концентрация должна при этом измеряться, по меньшей мере, два раза в день.
Активированный уголь и замена воды позволяют удалить медь после завершения процедур. Мониторинг содержания металла проводится регулярно в течение нескольких недель после завершения удаления на случай, если скопившаяся медь начнет высвобождаться из объектов водоема.
——
Roy P. E. Yanong. Use of Copper in Marine Aquaculture and Aquarium Systems. edis.ifas.ufl.edu/fa165
Источник: aquavitro.org
Банкодела. Металлы в аквариуме
В сети на форумах вопросы по поводу пользы или вреда того или иного металла присутствуют в изрядном числе и появляются вновь во множестве с регулярностью приливов и отливов.
Выяснив на одном форуме, что медь или ржавый гвоздь смертельно опасен для обитателей аквариума, юзеры ищут, находят и снова спрашивают на новых форумах, скорее всего надеясь, что любимый металл все же даст какую-либо пользу.
Терпение рук, нетерпение сердца и трудолюбие достойные уважения.
Количество металлов из пресловутой таблицы Менделеева, которые означенные естествоиспытатели пытаются всунуть в аквариум, поражает и остается только радоваться, что некоторые из веществ все той же таблицы им недоступны. Что ими движет. можно предположить что интеллектуальная скука и простое любопытство. Вот например известная поговорка, что »неудобно гадить в бутылку» вполне возможно появилась не умозрительно. теоретически, так сказать, а родилась в результате эксперимента. неудачного.
В своих поисках пользы они и правы и неправы. даже такие губительные для обитателей аквариума металлы как медь или даже цинк присутствуют например в некоторых лечебных препаратах и вообще все в каких-то дозах в любом месте да присутствует. просто важны дозы и окружающая среда. то есть на одном и том же обсуждении один жалуется на то что все у него поумирали от ржавого гвоздя или медной проволочки, а другой внезапно обнаруживает что все это у него присутствовало в опекаемом им объеме испокон веков и никак себя не проявляло.
Здесь все зависит от того что живет или растет в вашем аквариуме, градус кислотности, жесткости, температуры, заиленности, количества органики в грунте и так далее. Причем изменение каждого из факторов всего лишь на толику градуса ведет к необходимости вспомнить что такое математические сочетания, перестановки и размещения.
И тут для тех кто не ищет себе сложностей и трудных путей в деле содержания аквариума ради его созерцания и любования стоит упростить все до понятий описанных в известном произведении »Что такое Хорошо и что такое Плохо».
Медь, цинк, ржавые гвозди(некоторые из них к тому же могут быть оцинкованными, а у вас в доме вряд ли есть экспресс хим. Лаборатория), олово, свинец и так далее это все плохо! Если у вас из перечисленного что-то попало в аквариум можете кричать »На помощь!», »Помогите. », или молиться — все это поможет вам в равной степени и все будет зависеть от случайного совпадения факторов. погоды за окном, хим состава воды в вашем доме. или где вы там обитаете.
Повторюсь. в сети множество случаев когда на сотню примеров губительного воздействия свинца или меди появляется сотня, аргументированных литературой, опытом и крепким словом, возражений и утверждений пользы. то есть — окончательного вердикта нет, а значит: если вы точно не уверены в том что кусок меди принесет пользу рыбам или растениям то, значиться, и не хрен его туда совать.
Я почти все из перечисленного попробовал помещать в аквариум. что сказать. иногда умирали одни и расцветали другие, в следующий раз все наоборот.
Единственный из металлов, совершенно на моем опыте безвредный — это алюминий. Особенно это важно, если вам что-то нужно скрепить в аквариуме. корягу, некую конструкцию. и у вас из подсобных материалов только и есть что алюминиевая проволока. Она и гнется хорошо и вреда не приносит. правда со временем окисляется и выглядит неопрятно.
Железо необходимо в первую очередь вашим растениям. при быстром росте за счет подачи СО2, кислорода и освещения они быстро исчерпывают все запасы аквариума и необходимо их восполнять. этот процесс называется на сленге »хелата». »хелатирование». Проще всего изготовить самому – всего-то и нужно – электронные малогабаритные весы, дистиллированная вода, железный купорос и лимонная кислота. все это продается и при наличии всего этого вы через пять минут совершенно безопасного смешивания и растворения получаете нужную добавку.
Ржавый гвоздь и вообще железо, которое вы попробуете кинуть в аквариум — это совсем не то железо которое вам, а точнее растениям нужно. Им нужно двухвалентное, а гвоздь, рессора или карданный вал это железо трехвалентное. Правда, двухвалентное железо со временем также становится трехвалентным. железо, то есть Феррум многообразен и может быть и элементарным, и двухвалентным, и трехвалентным, коллоидным, бактериальным, органическим и так далее. если вам хочется знать больше, то конечно же читайте и просвещайтесь, но если хочется спокойной околоаквариумной жизни, то просто не бросайте в воду ничего из перечисленного металлического.
Кстати. металлы в вашей воде из-под крана конечно же присутствуют. и если вода набранная вами сначала чистая и прозрачная, и лишь потом после отстоя дает чуть красновато-коричневый осадок, то это и есть нужное вам двухвалентное железо. Если осадок именно этого цвета, но вода была не прозрачной, а мутно – желтоватой, то это железо трехвалентное.
Источник: proza.ru
Минеральное питание аквариумных растений
Живой организм содержит все химические элементы, но для питания растений необходимы только некоторые из них. Растения способны активно извлекать нужные им вещества из внешней среды. Гидрофиты больше зависят от окружающей среды, чем наземные растения, получающие основную часть питания из грунта, так как в отличие от них усваивают питательные вещества всей своей поверхностью.
Кроме углекислого газа и кислорода, обеспечивающих жизнедеятельность растений, они нуждаются в таком веществе, как азот, обеспечивающем синтез белков. В сравнительно большом количестве растениям необходимы сера, фосфор, хлор, кремний, калий, натрий, кальций, магний. Для питания Растений также необходимы бор, цинк, медь, марганец, железо, молибден, кобальт и др.
Эти вещества используются растениями в очень незначительном количестве, поэтому они получили название микроэлементов. Концентрация питательных веществ в воде может колебаться в довольно широких пределах. Организм растения, извлекая эти вещества из внешней среды, создает в тканях их необходимую концентрацию.
Если этих веществ в воде и грунте достаточно, растение развивается правильно, быстро растет, цветет и плодоносит. При недостатке одного или нескольких необходимых веществ отмечается отставание в росте, изменение формы растения, прекращается размножение. Иногда наблюдается избыток в воде тех или иных химических элементов, что также может вызвать нарушение развития растений.
В этой главе мы поговорим о влиянии различных химических веществ на рост растений и коснемся вопроса об искусственной подкормке. Начнем с такого чрезвычайно важного для жизни растении вещества, как азот. Этот элемент является основой для создания белков растений, необходимых для их роста и размножения.
В аквариум азот обычно попадает в составе органических соединений, содержащихся в корме для рыб. При разложении органических веществ, которые в исходном состоянии растения усвоить не могут, образуются аминокислоты, но их усвоение растениями также очень затруднено. Тогда в дело вступают бактерии, обитающие в придонном слое воды и преимущественно в грунте.
Они перерабатывают органические вещества в амины, нитриты и нитраты. Эти соединения растения легко извлекают из воды и грунта и усваивают.
Но так как процесс разложения белков долог, на определенном этапе, особенно в новом аквариуме, растения могут голодать до тех пор, пока донная микрофлора не справится с переработкой накапливающейся органики и растения не будут снабжаться необходимым количеством азота. В старом аквариуме с богатой растительностью, так же как и в новом аквариуме, можно наблюдать признаки азотного голодания: преждевременное отмирание старых листьев, пожелтение краев и кончиков листьев, распространяющееся постепенно на всю листовую пластинку, замедление роста.
Это связано с тем, что донная микрофлора не справляется с переработкой органических соединений, не успевает их перевести в форму, пригодную для усвоения растениями. В этом случае можно вносить в аквариум небольшие добавки азотных удобрений в виде нитратов (соединений NO3) или производных аммиака (NH3). Какие же из этих соединений лучше использовать?
Выбор зависит от активной реакции среды, т. е. значения рН. В аквариум с выраженной кислой средой – рН ниже 6,5 – лучше вносить нитраты. Опыты показали, что в кислой воде они лучше усваиваются растениями, чем соли аммиака. Напротив, в нейтральной и слабощелочной воде значительно лучше усваивается азот аммиака.
В этом случае предпочтительно воспользоваться мочевиной, или карбамидом. Если в аквариум добавляются только азотные удобрения, лучше это делать ежедневно или в крайнем случае через день. Тогда не будет наблюдаться резкого изменения содержания азота в воде, который в больших концентрациях отрицательно влияет на рыб.
Равномерное добавление азотных удобрений в небольшом количестве на животных – обитателей аквариума – не повлияет, так как растения будут успевать усваивать все нитросоединения. При создании нового аквариума можно одномоментно внести 25 мг мочевины на литр воды. В новом аквариуме вода имеет нейтральную реакцию и мочевина будет легко усваиваться растениями из воды и грунта.
По мере старения воды часть мочевины, не усвоенная растениями, будет окислена микрофлорой до нитритов и нитратов и также будет использована высшими растениями. После появления признаков роста у растений, посаженных в новый аквариум, можно начать добавлять азотные удобрения в очень малых дозах.
Мочевину дозировать очень легко, так как она выпускается в виде гранул. В первое время нужно ежедневно добавлять по 3–4 гранулы на 100л воды.
При появлении признаков азотного голодания в старом аквариуме можно также добавлять в воду мочевину, которая будет частично усвоена в неизменном виде, а частично окислена грунтовыми бактериями до нитритов и нитратов и также использована растениями. Начинать добавки надо с очень незначительной дозы – примерно 2 гранулы на 100л воды ежедневно для аквариума, густо засаженного растениями.
Через каждые 3–4 дня дозу можно увеличивать, доведя ее до 10–12 гранул на 100л ежедневно. Так же следует вносить удобрение и в новый аквариум, но начальная доза, как уже было сказано, может быть больше. Добавлять мочевину нужно только после появления признаков роста гидрофитов. Максимальная же одноразовая доза также не должна превышать 10–12 гранул.
Важнейшим из макроэлементов, который нужен растениям в сравнительно большом количестве, является фосфор. Этот элемент принимает самое активное участие в процессах запасания и расходования энергии и соответственно в синтезе белков, жиров, углеводов, витаминов, ферментов, а также в процессах дыхания и питания растений.
Напомню читателям только один общеизвестный факт: фосфор – основная часть АТФ (аденозинтрифосфата), который является основным энергетическим веществом живого организма. В наибольшем количестве фосфор накапливается в молодых побегах растений.
Признаками фосфорного голодания являются потемнение окраски молодых листьев, скручивание листьев и побегов, появление на старых листьях бурых и красновато-бурых пятен. В качестве фосфорного удобрения чаще всего используются кальциевые, калиевые и магниевые соли ортофосфорной кислоты. Наиболее широко применяется кальциевая соль этой кислоты – суперфосфат (Ca(H2PO4)2 o Н2О).
Определить по внешним признакам, что растениям в аквариуме не хватает именно фосфора, довольно трудно. Поэтому при появлении признаков недостатка минеральных веществ в воду добавляют комплексные удобрения, в составе которых есть и фосфор. Следующим важным для жизни растений макроэлементом является калий.
Этот элемент участвует в синтезе углеводов и накапливается в основном в молодых тканях растений. Калий участвует в большинстве ферментативных процессов, происходящих в тканях растений. Из-за того что аквариум является относительно изолированной системой, количество калия в воде может оказаться недостаточным для развития растений.
Обычно питательные вещества, используемые растениями, попадают в аквариум с кормом для рыб и со свежей, подмениваемой водой. Недостаток калия обычно выражается в появлении на краях листьев бурых и желтых пятен. В аквариум калий удобно добавлять в составе комплексных удобрений. Можно использовать однозамещенный фосфорнокислый калий.
Это вещество содержит калий и фосфор в легко усвояемой форме. Добавлять его в аквариум можно в дозе 2–3 г на 100л воды. В сельском хозяйстве используется комплексное минеральное удобрение нитрофоска. Оно содержит самые необходимые макроэлементы – азот, фосфор, калий – в оптимальном для растений соотношении.
Это минеральное удобрение можно вносить в аквариум при каждой подмене воды. Обычная дозировка – от 1 до 2 г на 100л воды. Количество вносимой подкормки должно зависеть от количества растений и рыб.
Чем более плотно засажен растениями аквариум, тем обильнее должны быть минеральная подкормка, и наоборот, с увеличением животного населения аквариума минеральную подкормку следует уменьшить, чтобы не вызвать накопления минеральных веществ и отравления рыб избытком азота и калия. Необходим для аквариумных растений и такой макроэлемент, как кальций.
Растения в аквариуме лишь в очень редких случаях испытывают недостаток этого вещества. Количество кальция в воде определяет ее жесткость, и, следовательно, только в очень мягкой воде, и не просто мягкой, а имеющей жесткость, близкую к нулевой, растения могут испытывать кальциевый голод. Но такая вода встречается крайне редко.
Магний, так же как и кальций, относится к макроэлементам. Этот элемент играет существенную роль в обмене веществ, особенно в молодых органах растений. Недостаток его в воде встречается значительно чаще, чем недостаток кальция. Присутствие ионов магния, как уже указывалось, влияет на степень жесткости воды.
Но жесткость в искусственных водоемах и аквариумах часто повышают, добавляя в воду только соли кальция. При этом у растений может наступить магниевый голод, который выражается в появлении белых пятен между жилками листа и последующем распаде тканей листовой пластинки.
Поэтому еще раз хочу напомнить любителям водных растений, что при искусственном повышении жесткости воды следует обязательно использовать сочетание солей магния и кальция. К макроэлементам нередко относят и кремний. Он входит в состав «скелета» многих наземных растений, обеспечивая прочность их стеблей.
Водные растения, находясь во взвешенном состоянии, поглощают кремний в значительно меньшем количестве, так как прочность «скелета» для них играет не столь важную роль. Потребление кремния земноводными растениями значительно повышается, когда они выходят в воздушную среду. В условиях аквариума кремниевый голод практически никогда не наблюдается.
Таковы основные краткие сведения о макроэлементах. Теперь можно перейти к вопросу влияния на рост растений микроэлементов. Название это условное, так как эти химические вещества играют очень важную, а отнюдь не микророль в жизни растения. Но дело в том, что количество каждого из этих веществ, необходимое для удовлетворительного функционирования организма, очень незначительно.
Самые важные микроэлементы содержатся в растениях в количестве от 0,001 до 0,00001%. Остановимся только на некоторых из них, особенно необходимых для жизни растений. Недостаток этих элементов в воде аквариума обязательно нужно компенсировать. Одним из наиболее важных для растений микроэлементов является бор. Его роль в жизнедеятельности организма растения очень сложна.
Недостаток бора сказывается на молодых тканях растения. Признаками недостатка бора являются почернение и гибель верхушечных точек роста. Недостаток бора в аквариумной воде можно компенсировать, добавив к ней борную кислоту или буру (тетраборнокислый натрий – Na2B4O7 o 10H2O). Количество вещества можно рассчитать исходя из следующей пропорции: 0,2 мг на 1л объема аквариума.
Такую подкормку можно производить 1–2 раза в месяц. Важную роль в процессе тканевого дыхания растений играет цинк. Он входит в состав хлоропластов (хлорофиллосодержащие зерна) растений и участвует в фотосинтезе. Определить визуально, по состоянию растений, недостаток цинка в воде трудно.
Обычно в составе комплексных минеральных удобрений, вносимых в аквариум для подкормки растений, содержатся и соли цинка. Дополнительно можно использовать сернокислый цинк, который добавляют в количестве 0,1 мг на 1л воды, так же, как и другие микроэлементы, 1–2 раза в месяц при подмене воды.
Одним из микроэлементов, необходимых для питания растений, является медь. Развитие растений без этого элемента практически невозможно. Исследования показали, что медь активирует витамины группы В, влияет на белковый и углеводный обмен, защищает от распада хлорофилл, способствует синтезу белка.
При недостатке меди в воде аквариума бледнеет вся листовая пластинка (хлороз), отмирают мягкие ткани листа. Вносить медь в аквариум можно в виде медного купороса (CuSO4 o 5H2O). Количество вещества не должно превышать 0,2 мг на 1л воды. Подкормку производят 1–2 раза в месяц. Без марганца так же, как и без многих других микроэлементов, развитие растений невозможно.
Он принимает активное участие в окислительных процессах, восстановлении нитратов в процессе фотосинтеза, входит в состав многих окислительных ферментов растений, принимает участие в тканевом дыхании. Недостаток марганца проявляется в возникновении мелких, сначала светлых, а потом коричневых пятен между жилками молодых листьев.
Компенсировать недостаток марганца можно внося в воду марганцевокислый калий (KMnO4) из расчета 0,1 мг на 1л воды 1–2 раза в месяц. Микроэлементом, также влияющим на обмен веществ у растений, является молибден. Его основная функция – фиксация азота в тканях растений, нормализация процессов фосфорного питания и углеводного обмена.
Молибден участвует во многих окислительно-восстановительных реакциях, происходящих в организме растения. В условиях аквариума молибденовый голод, как правило, не наблюдается. Обнаружить недостаток молибдена в воде можно только с помощью химического анализа. Надо отметить, что все комплексные минеральные удобрения, выпускающиеся промышленностью, содержат молибден.
Незначительная добавка таких удобрений в воду аквариума может компенсировать недостаток этого элемента. Особую роль в синтезе витаминов, особенно витамина С, при обмене веществ у растении играет кобальт. Количество его, необходимое для питания растений, очень невелико.
Недостаток кобальта так же, как и молибдена, обнаружить обычным способом – по изменению внешнего вида растения – не удается. Кобальт, поступающий в аквариум в составе кормов для рыб, вполне обеспечивает потребность в нем растений. Особенно много этого микроэлемента в мотыле. Большинство макро- и микроэлементов содержится в комплексных минеральных удобрениях.
В настоящее время выпускаются удобрения, содержащие все необходимые растениям вещества. Сюда можно отнести, в частности, комплексные удобрения, выпускающиеся в жидком виде: «Вито», «Родничок-1», «Родничок-2».
В гранулированном и порошкообразном виде выпускаются комплексные минеральные удобрения марки А и марки Б. Кроме них в магазины объединения «Природа» поступают микроудобрения в виде таблеток. Все они вполне пригодны для применения в аквариуме. Состав удобрительных смесей указан на этикетках.
При добавлении их в аквариум следует придерживаться следующего правила: концентрация удобрения в воде аквариума должна быть в 50–100 раз ниже концентрации, рекомендуемой для поливной воды. Такое количество минеральной подкормки будет достаточным для аквариумных растений и не принесет вреда рыбам и другим животным. Производить подкормку нужно периодически.
Лучше всего это делать при регулярной подмене воды раз в неделю или раз в десять дней. В подмениваемую воду, объем которой обычно составляет 1/5–1/4 объема аквариума, добавляются удобрения. Сухие удобрения лучше предварительно растворить.
В том случае, если удобрение растворяется плохо или вносится в сухом виде, частицы его, случайно попавшие на листья растений, надо смыть струёй воды из резиновой груши. Жидкое комплексное удобрение «Родничок-2» содержит необходимые макроэлементы в равных количествах: по 3% калия, азота и фосфора.
Такое соотношение вполне устраивает водные растения. Кроме того, в состав удобрительных смесей входят необходимые микроэлементы. Для подкормки растений этим комплексным жидким удобрением его можно еженедельно добавлять в подмениваемую воду из расчета 1 мл на 10л объема аквариума.
Доза эта невелика, но надо учитывать, что некоторое количество минеральных веществ попадает в аквариум с кормом для рыб, а кроме того там происходит естественная минерализация органических веществ с помощью грунтовых бактерий. Менее подходит для подкормки водных растений удобрение «Родничок-1».
Дело в том, что макроэлементы, входящие в состав удобрения, содержатся в неравных количествах: азот – 2%, фосфор – 1%, калий – 4%, магний – 1%. Количество калия увеличено специально для огородных культур с целью подкормки молодых, быстро растущих посадок. В аквариуме, где сезонность роста растений не выражена, нет необходимости существенно увеличивать количество калия.
Жидкое комплексное удобрение «Вито», выпускаемое латвийским заводом «Сподриба», рекомендуется для выращивания комнатных и балконных растений и для гидропонного выращивания самых различных культур. Это комплексное минеральное удобрение содержит практически все макро- и микроэлементы, необходимые для питания растений.
Применение «Вито» для подкормки аквариумных растений дает неплохие результаты. Масса растений увеличивается, растения приобретают яркую, сочную окраску. Удобрение вносится еженедельно при очередной подмене воды по 1 мл на 10–20л объема аквариума. При внесении «Вито» в аквариум в первые сутки отмечается некоторое помутнение воды, которое быстро проходит.
Сухих минеральных комплексных удобрений выпускается гораздо больше, чем жидких. Необходимый набор макро- и микроэлементов содержит «Фоскамид». Это удобрение можно использовать для подкормки водных растений, хотя оно и плохо растворимо. Его можно всыпать прямо в аквариум при подменах воды раз в неделю из расчета около 1,5–2 г на 100л объема.
Необходимо проследить, чтобы гранулы не попадали на листья растений. Особенно опасно, когда они попадают в середину розетки листьев таких растений, как эхинодорусы, криптокорины и др. Удобрение сжигает молодые, закладывающиеся листья, они вырастают более мелкими я деформируются, что совсем не украшает растения. Хорошо подходит для подкормки аквариумных растении нитрофоска.
Однако она не содержит микроэлементов, поэтому при ее использовании в воду следует добавлять микроудобрения. Промышленностью выпускается несколько видов микроудобрений в таблетках. Микроудобрения марки 1А, содержащие 10 мг бора, 20 мг цинка и 30 мг марганца в каждой таблетке, очень полезны для флоры аквариума. Одну таблетку следует вносить 1–2 раза в месяц на 150–200л воды.
Эти удобрения хорошо сочетаются с микроудобрениями марки 4А, в одной таблетке которых содержится 40 мг бора, 20 мг меди, 0,8 мг молибдена, 0,8 мг кобальта, 0,8 мг никеля. Кроме того, там содержатся биологически активные вещества, стимулирующие рост растений. Одну таблетку микроудобрения добавляют на 200–300л воды не чаще одного раза в две недели.
Несколько менее эффективны для подкормки аквариумных растений микроудобрения других марок. Но добавка и незначительного количества микроэлементов положительно сказывается на росте растений. Одним из элементов, как правило, отсутствующих в составе комплексных удобрений и очень необходимых для питания растений, является железо.
Особенно важны ионы двухвалентного железа, участвующие в тканевом дыхании. Добавление в аквариум еженедельно около 0,1–0,2 мг железного купороса (FeSO4 o 7H2O) на 1л воды значительно повышает яркость зелени большинства растений, особенно улучшается красная окраска молодых листьев и побегов. В заключение следует напомнить о том, что компенсировать недостаток в воде аквариума необходимых для растений элементов не составляет большого труда, так как химические вещества, в состав которых входят эти элементы, вполне доступны.
Источник: aquarium-fish-home.ru